skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gonçalves, Bruna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gray, Ron; McDonald, Scott; Stroupe, David (Ed.)
    Elementary science education, particularly in the 4th and 5th grades, is essential for setting the foundation for lifelong science learning, fostering critical thinking, and preparing students for success in science, technology, engineering, and mathematics (STEM) fields. This stage is especially critical for students with disabilities, as achievement gaps between them and their peers emerge during elementary school. Despite this importance, little is known about how science is taught in elementary classrooms during these critical years, particularly for students with disabilities. To address this gap, we surveyed teachers from a nationally representative sample of U.S. schools to examine elementary science education, including instructional practices, allocation of time, and the inclusion and support of students with disabilities. Our findings reveal that limited instructional time is allocated to science, with significant variability across classrooms. The amount of time dedicated to science instruction was significantly influenced by external factors, such as whether science was a tested subject. Students with disabilities often face additional barriers, including being pulled out of science instruction for special education services, resulting in missed opportunities to engage in science. These findings highlight the need to address opportunity gaps in science instruction to ensure all students have meaningful access to quality science education. 
    more » « less
    Free, publicly-accessible full text available April 18, 2026
  2. null (Ed.)
    During the last few decades, the interest over chalcopyrite and related photovoltaics has been growing due the outstanding structural and electrical properties of the thin-film Cu(In,Ga)Se2 photoabsorber. More recently, thin film deposition through solution processing has gained increasing attention from the industry, due to the potential low-cost and high-throughput production. To this end, the elimination of the selenization procedure in the synthesis of Cu(In,Ga)Se2 nanoparticles with following dispersion into ink formulations for printing/coating deposition processes are of high relevance. However, most of the reported syntheses procedures give access to tetragonal chalcopyrite Cu(In,Ga)Se2 nanoparticles, whereas methods to obtain other structures are scarce. Herein, we report a large-scale synthesis of high-quality Cu(In,Ga)Se2 nanoparticles with wurtzite hexagonal structure, with sizes of 10–70 nm, wide absorption in visible to near-infrared regions, and [Cu]/[In + Ga] ≈ 0.8 and [Ga]/[Ga + In] ≈ 0.3 metal ratios. The inclusion of the synthesized NPs into a water-based ink formulation for screen printing deposition results in thin films with homogenous thickness of ≈4.5 µm, paving the way towards environmentally friendly roll-to-roll production of photovoltaic systems. 
    more » « less